
StyleTransfer - Mesh deformation

Enguerrand DE SMET · Laurine LAFONTAINE

Abstract Mesh is an important and powerful type of

data for 3D shapes and widely studied in the field of

computer vision and computer graphics thus its data

is complex and irregular. With the introduction of ma-

chine learning, a lot of programs for image treatment

has been emerging. These algorithms make predictions

in 2D, ignoring the 3D structure of the world. Work-

ing with 3D could be giving a new axis on what we

can do with deep learning as we could modify object in

world-dimension. After working with 2D deep learning

structure, we wanted to give a shot at 3D deep learning

that remained relatively under explored for us. Our aim

is to deform a source mesh to form a new mesh, based

on a target, which is referred as morph target anima-

tion, using 3D loss functions. The final goal would be to

apply an artistic style to meshes after processing. Our

system, called StyleTransfer is based on the library Py-

Torch3d [1], which is used for deep learning with 3D

data.

Keywords reinforcement learning · pytorch · mesh ·
deformation · 3d model · morph target animation ·
papers

1 Introduction

Nowadays, video game companies, VFX and even ap-

plications in virtual and augmented reality create a de-

mand for rapid creation and easy access to large sets

of 3D models. Same as the video game industry, who

always want to work faster. In order to satisfy this de-

mand, artists need to edit or deform existing 3D models

based on a reference. This process is known as morph

targeting. With the introduction of deforming meshes

using deep learning, they could work faster and more ef-

ficiently. Significant advances in 3D shape understand-

ing have been made with neural networks.

Enguerrand DE SMET
E-mail: desmet.enguerrand@gmail.com

Laurine LAFONTAINE
E-mail: laurine.lafontaine@outlook.fr

(a) Step 1 : The source
mesh is a sphere

(b) Step 2 : The source
mesh starts to deform to
look like its target

(c) Step 3 : The source
mesh is completely de-
formed to the shape of the
target

Fig. 1 Steps of the deformation

Artists are able to form high-level interpretations of

3D objects. How machines can be as good as human ?

If we want to use machines as developing a modeling-

assistant tool, they must be as efficient as humans (or

at least close to). Intelligent agents needs to learn 3D

modeling like human does. First, the shape must be

seen as a basic geometric primitives to approximate the

shape. Then, the mesh needs to be edited, based on

the primitives using specific operations to create more

detailed geometry. The algorithm needs to learn to take

a primitive as input an edit it to have the wanted mesh.

Deforming meshes can be used to represent a col-

lection of objects with different shapes and poses. Even

years after, there is still challenging problems to solve.



2 Enguerrand DE SMET, Laurine LAFONTAINE

Indeed, meshes may differ in their number of vertices

and faces, and their topology. Such heterogeneity makes

it difficult to efficiently implement batched operations

on 3D data using operators provided by standard deep

learning toolkits like PyTorch and Tensorflow. In our

case study, as we use the library PyTorch3D, the mesh

is a load obj which is a file format containing the de-

scription of a 3D geometry. In this paper, we have se-

lected a few of the best-ranked 3D networks and we

draw on state-of-the-art methods for 3D shape predic-

tion to build a mesh deformation system.

2 Related work

With an impressive breakthrough made during the 2012

ILSVR challenge[2], machine learning based methods

became the new go-to for image restoration and seg-

mentation algorithms. We based our work on some pa-

pers that use 3D shapes.

2.1 Variational Autoencoders (VAE) for Deforming 3D

Mesh models

This paper suggests a new framework called Mesh Vari-

ational Autoencoders[3], which aim is to produce a gen-

erative model capable of analysing model collections

and synthesising new ones. It needs to explore the la-

tent space behind deforming 3D shapes and with all

these information, is able to generate new models not

existing in the original dataset.

Instead of using representations with image-like con-

nectivity, the team that works on it uses a surface repre-

sentation called RIMD (Rotation Invariant Mesh Differ-

ence) [4], which is a rigid motion invariant mesh repre-

sentation based on discrete forms defined on the mesh.

A RIMD representation is linearly combined and the

mean reconstruction error is extremely small. It can

easily represent deformations, along with a variational

autoencoder (VAE) [5]. A VAE is a particular type of

autoencoder whose training is regularised to avoid over-

fitting and ensure that the latent space has good prop-

erties that enable generative process.

Their algorithm can have multiple application : shape

generation, shape interpolation, shape space embedding

or even shape exploration. It is a fully-connected net-

work, along with a simple reconstruction loss based on

Mean Square Error (MSE). It can be used with small

number of training and it is trained using a collection

of 3D shapes with the same connectivity.

This algorithm needs to have some pre-processing

with extraction features, that are represented with the

RIMD mesh feature, which can be the output of the

Fig. 2 VAE network

mesh VAE. The mesh model can be reconstructed effi-

ciently with some optimisation.

For the activation function, they use an hyperbolic

tangent (tanh). They state stay their encoder aims to

map the posterior distribution from datapoint x to the

latent vector z, and the decoder produces a plausible

corresponding datapoint x from a latent vector z. All of

this allows to generate new models, which are generally

plausible.

2.2 Accelerating 3D Deep Learning with PyTorch3D

PyTorch3D is an open-source library of modular, effi-

cient, and differentiable operators for 3D deep learning

that is built on PyTorch. It improves the state-of-the-

art for unsupervised 3D mesh and point cloud predic-

tion from 2D images on ShapeNet[6]. As PyTorch3D

is open-source, it helped a lot to accelerate research in

3D deep learning. This is thanks to this library that we

were able to do our algorithm.

PyTorch3D allow to easily handle 3D data struc-

tures, to manage batches of meshes and point clouds

which allow conversion between different tensor-based

representations (list, packed, padded) needed for var-

ious operations. This library comes with multiple 3D

operators such as Chamfer loss, Graph convolution and

K Nearest Neighbours.

Thanks to this library, we can also be able to do

some differentiable rendering, which is relatively new

and exciting for research. This renderer is based on

CUDA. Speaking of it, we can have a differentiable

mesh renderer that propagate gradients backward from

rendered images to scene information, allowing render-

ing to be embedded into deep learning pipelines. This

renderer comes with a rasterizer that uses a camera to

transform meshes from world to view coordinates and

shaders that consume the Fragment data produced by

the rasterizer and compute pixel values of the rendered



StyleTransfer - Mesh deformation 3

image. There is also a differentiable point cloud ren-

derer that follows the same design as the mesh renderer.

Finally, using PyTorch3D made improvements in

speed and memory and is up to 10 times better com-

pared with original PyTorch operator.

2.3 Mesh R-CNN

Based on Mask R-CNN[7], which detects objects in an

image while simultaneously generating a high-quality

segmentation mask for each instance. Based on this

2D recognition algorithm, the Mesh R-CNN team done

their algorithm, augmenting it with a mesh prediction

branch that outputs an high-resolution triangle meshes.

Mask R-CNN inputs a single RGB image and out-

puts a bounding box, category label, and segmentation

mask for each detected object. The image is first passed

through a backbone network (ResNet-50-FPN); next a

region proposal network (RPN) : gives object propos-

als which are processed with object classification and

mask prediction branches. Mesh R-CNN[10] is based

Fig. 3 ResNet-FPN network

on Detectron2[8] and PyTorch3D[1].

Earlier papers that works on mesh prediction with

deep networks has been constrained to deform from

fixed mesh templates, limiting them to fixed mesh topolo-

gies. To overcome this, they first predicts coarse voxels,

which are refined for accurate mesh predictions.

The Mesh R-CNN team outlined a framework that

takes as input a real-world RGB image, detects the ob-

jects within the image, and outputs a category label,

bounding box, segmentation mask, and a 3D triangle

mesh, giving the full 3D shape of each detected objects.

Predicted meshes must be able to capture the 3D struc-

ture of diverse, real-world objects. Predicted meshes

ought to subsequently powerfully shift their complex-

ity, topology, and geometry.

A 3D shape is created with a novel mesh predic-

tor, composed of a voxel branch and a mesh refinement

branch. The voxel branch first estimates a coarse 3D

Fig. 4 Mesh RCNN network

voxelization of an object, which is converted to an ini-

tial triangle mesh. The mesh refinement branch then

alters the vertex positions of this initial mesh using a

sequence of graph convolution layers operating over the

edges of the mesh.

Concerning the mesh predictor it consists of the

voxel branch and mesh refinement branch : receives con-

volutional features aligned to an object’s bounding box

and predicts a triangle mesh giving the object’s full 3D

shape. Each predicted mesh must have instance-specific

topology (number of vertices, faces, connected compo-

nents) and geometry (vertex positions) The output of

this predictor is a triangle mesh T = (V, F ) for each

object.

As they work with voxels, they need to cubify in

order to convert shapes to meshes. Their algorithm is

based on a lot of steps which can now be bypassed.

2.4 Modeling 3D Shapes by Reinforcement Learning

Reinforcement learning differs from the supervised learn-

ing in a way that in supervised learning the training

data has the answer key with it so the model is trained

with the correct answer itself whereas in reinforcement

learning, there is no answer but the reinforcement agent

decides what to do to perform the given task. Within

the nonappearance of a training dataset, the network

need to learn from its experience.

– Agent :

– The learner and the decision maker.

– Environment :

– Where the agent learns and decides what actions

to perform.

– Action :

– A set of actions which the agent can perform.

– State :

– The state of the agent in the environment.

– Reward :

– For each action selected by the agent the en-

vironment provides a reward. Usually a scalar

value.



4 Enguerrand DE SMET, Laurine LAFONTAINE

Modeling 3D Shapes by Reinforcement Learning[9]

introduce a two-step reinforcement learning for shape

analysis and geometry editing. Their agents can pro-

duce regular and structure-aware mesh models to cap-

ture the fundamental geometry of 3D shapes.

They worked on primitive-based shape abstraction,

which use the prim-Agent to understand the part-based

structure of a shape by collaborating with the environ-

ment. Agents continually change the primitives based

on the feedback to achieve the goal. Iteratively, each

primitives are visited, to test all the potential actions

for the primitive and execute the one which can obtain

the best reward. Amid the primary half of the method,

they do not consider any erase operations but alter the

corners. This is often to empower all the primitives to

fit the target shape first. At that point within the sec-

ond half, they autorize primitives erasing to dispose of

repetition.

Their algorithm edit mesh editing by edge loops so

they can edit a group of vertices and control an integral

geometric unit instead of editing each vertex separately,

which preserves the mesh regularity and improves the

efficiency. Iteratively, each edge loop are visited to test

all the potential actions for the edge loop and execute

the one which can obtain the best reward.

Fig. 5 Modeling 3D shapes with reinforcement learning
training flow

The network of this algorithm is based on the Dou-

ble DQN Reinforcement learning[11] by self-exploration.

As they are limited with data, they use dataset aggre-

gation, which need to be supervised by a human but

is efficient for the lacking data. Agents retain a part of

the memory from the expert but also gain new experi-

ences by their own exploration. This allows the agents

to potentially compare the actions learned from the ex-

pert and this is how they succeed to have an efficient

algorithm.

3 Pre-processing

As we wanted to appropriate our algorithm, we decided

to generate our own dataset.

3.1 Dataset generation with Houdini

In order to test these deformation algorithms we gener-

ated some meshes to work with. That’s why we decided

to use the well-known software Houdini which allow us

to generate procedurally both input and target meshes

for our deformation algorithm.

(a) Houdini nodes for proce-
dural rock

(b) Houdini nodes : scatter
and switch primitives

Fig. 6 Houdini steps

We use the nodal system of Houdini to generate

rocks from several rectangles resulting from a random

scattering step. With this system, we can expose various

parameters in order to export both the rectangles and

the corresponding rocks. Therefore, it will be possible

to quantify the quality of the deformation.

https://www.sidefx.com/products/houdini/


StyleTransfer - Mesh deformation 5

Box Rock

Fig. 7 Meshes generated with Houdini

3.2 Subdivide meshes

An additional step was necessary so that the algorithm

has enough vertices on the source mesh. We used a

Python library called Trimesh to subdivide the source

mesh faster so that it can be deformed properly after-

wards. We first compute the max edge of our mesh and

we do a re-triangulation of existing meshes by subdi-

viding our mesh until every edge is shorter than a the

max edge length.

Fig. 8 Mesh subdivided

4 Method

After all the pre-processing, we can start using our data.

As said earlier, our algorithm is based on PyTorch3D

to be efficient.

4.1 Primitive-based shape

The idea is to reproduce a complex mesh by deforming

primitives that give a rough volume of the space where

the target mesh should be generated. The algorithm

reads in input some rectangles primitives, which is our

source mesh from a .obj file extension using the load obj

method. We also load the target mesh.

For both these objects, we store our vertices and

faces. Vertices is a FloatTensor of shape (V, 3) where V

is the number of vertices in the mesh. Faces is an object

which contains the following LongTensors, verts idx,

normals idx and textures idx. We scale, normalize and

center the target meshes and we construct a meshes

structure for the source and target mesh.

This one will then generate a second subdivided

mesh allowing to have a sufficient number of vertices

to work with.

4.2 Agent Training Algorithm

The algorithm will then sample uniformly a certain

number of points from the surface of the source mesh

(5000k) and will apply successive deformations in or-

der to minimize a weighted error function well chosen

from different distance measures (chamfer loss, normal

consistency, ...) between the source and target mesh.

As the optimizer for our training pass, we use a

stochastic gradient descent, which is an iterative method

for optimizing an objective function with suitable smooth-

ness properties. It is a modification of the gradient

descent, where is calculated the gradient using just a

random small part of the observations instead of all of

them. In some cases, this approach can reduce compu-

tation time. The gradients are calculated and the de-

cision variables are updated iteratively with subsets of

all observations, called minibatches.

Loss =wc .chamferloss + wn .normalloss

+ we .edgeloss + wl .laplacianloss

(1)

Here’s our parameter for the loss equation : wc =

1.0, we = 1.0, wn = 0.01, and wl = 0.1.

The network learns to deform the source mesh by

offsetting its vertices and observe errors from the sam-

ple points. The shape generated from the deformation

parameters is equal to the total number of vertices of

the source mesh, which is why we had previously sub-

divided the source mesh.

The last step consists in recovering the vertices and

faces of the final predicted mesh, normalising to the

scale of the source mesh to return to the original target

size and finally saving the generated mesh.

https://trimsh.org/trimesh.html


6 Enguerrand DE SMET, Laurine LAFONTAINE

5 Results

We provided some results that mix our own data gen-

eration and open-source 3D models.
Target Source Output Point cloud

Each time the algorithm is running, the loss is cal-

culated. For the last example in the table, the loss value

is 0.008 for 5000 epochs, which is a really small values.

As it won’t be readable, we won’t write every loss that
we had, but the average is around 0.015.

5.1 Distance between two surfaces

When we want to check if an image is well-denoised, we

use SRN. Likewise, we wanted to see if our output was

similar to our target. For that, we use KDTree to cal-

culate the average thickness between two surfaces. We

can compute the thickness between the two surfaces us-

ing a few different methods, we focused on the nearest

neighbour distance method to compare the distance be-

tween each point of the upper surface and the nearest

neighbour of the lower surface.

A k-d tree is a space partitioning data structure

that allows points to be stored, and searches to be made

more quickly than by linearly traversing the point array.

each of these nodes represents an axis-aligned hyper-

rectangle. Each node specifies an axis and splits the set

of points based on whether their coordinate along that

axis is greater than or less than a particular value. This

won’t be the exact surface to surface distance, but it

will be noticeably faster than a ray trace, especially for

large surfaces.

Box Cow

0.09 0.02

Fig. 9 Distance between target mesh and output

6 Conclusion

In this paper, we introduce various methods of mesh

deformation. We wanted to explore machine learning

and more specifically, how to teach machines to act like

a 3D artist. We learned a lot of things into the process

of meshes creation. In order to mimick artists in the

best way, our algorithm is based of a source-to-target

training. Given an target reference, our input meshes (a

primitive) learns to deform to fit the target. To effec-

tively train these modeling agents, we used PyTorch3D.

Ultimately, we hope to continue this project by fitting

textures onto our deformed meshes.

References

1. Nikhila Ravi. Jeremy Reizenstein. David Novotny. Taylor
Gordon. Wan-Yen Lo. Justin Johnson. Georgia Gkioxari,
Accelerating 3D Deep Learning with PyTorch3D, Facebook
AI Research (2020)

2. Alex Krizhevsky. Ilya Sutskever. Geoffrey E. Hinton. Ima-
geNet Classification with Deep Convolutional Neural Net-
works (2012)

3. Qingyang Tan. Lin Gao. Yu-Kun Lai. Shihong Xia, Varia-
tional Autoencoders for Deforming 3D Mesh Models (2018)

4. Lin Gao. Yu-Kun Lai. Dun Liang. Shu-Yu Chen. Shihong
Xia. Efficient and Flexible Deformation Representation for
Data-Driven Surface Modeling (2016)

5. Diederik P. Kingma. Max Welling. Auto-Encoding Varia-
tional Bayes (2014)

6. Angel X. Chang. Thomas Funkhouser. Leonidas Guibas.
Pat Hanrahan. Qixing Huang. Zimo Li. Silvio Savarese.
Manolis Savva. Shuran Song. Hao Su. Jianxiong Xiao. Li
Yi. Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository (2015)

7. Kaiming He. Georgia Gkioxari. Piotr Dollàr. Ross Gir-
shick. Mask R-CNN (2018)

https://arxiv.org/pdf/2007.08501.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://qytan.com/files/Tan_Variational_Autoencoders_for_CVPR_2018_paper.pdf
https://qytan.com/files/Tan_Variational_Autoencoders_for_CVPR_2018_paper.pdf
https://users.cs.cf.ac.uk/Yukun.Lai/papers/DeformationTOG2016.pdf
https://users.cs.cf.ac.uk/Yukun.Lai/papers/DeformationTOG2016.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1512.03012.pdf
https://arxiv.org/pdf/1512.03012.pdf
https://arxiv.org/pdf/1703.06870.pdf


StyleTransfer - Mesh deformation 7

8. Yuxin Wu. Alexander Kirillov. Francisco Massa. Wan-Yen
Lo. Ross Girshick. Detectron2 (2019)

9. Cheng Lin. Tingxiang Fan. Wenping Wang. Matthias
Nießner, Modeling 3D Shapes by Reinforcement Learning
(2020)

10. Georgia Gkioxari. Jitendra Malik. Justin Johnson, Mesh
R-CNN, Facebook AI Research (2020)

11. Hado Van Hasselt. Arthur Guez. David Silver. Deep Rein-
forcement Learning with Double Q-learning, Google Deep-
Mind (2015)

https://github.com/facebookresearch/detectron2
https://arxiv.org/pdf/2003.12397.pdf
https://arxiv.org/pdf/1906.02739.pdf
https://arxiv.org/pdf/1906.02739.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf

	Introduction
	Related work
	Pre-processing
	Method
	Results
	Conclusion

