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Figure 1: Left is blurred original image. Right is deblurred image. Extracted from GoPro dataset. 2017.
ABSTRACT

Video deblurring is a heavily researched topic that has
seen further improvements with the introduction of
machine-learning. From the recovery of car plates num-
bers to the improvements of handheld footage, it is a
key field in constant evolution. We will review the best
ranked open-sourced algorithm of this field, the Scale
Recurrent Network[24] (2018), and compare its results
against our own simpler implementation. Since its re-
lease, a few algorithms have outperformed it, so we will
propose an analysis of key points of these papers as
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well. As they are not open-sourced, we weren’t able to
compare them with a local dataset.
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1 INTRODUCTION

The aim of video deblurring is to recover sharp latent
images from blurred video frames. With the recent evo-
lution of smartphones, security cameras and social me-
dia we now have an incredible amount of low-quality
footage that needs such improvements for a similar
amount of needs. One of the difficulties of the field is



that the notion of blur encompasses multiple phenom-
ena and acts in the final image in multiple ways.

In our case study the most prominent blur is the one
caused by a movement of the camera going too fast rela-
tive to its shutter speed. In a frame we see it through the
spread of edges and the colors being averaged-out. It is
commonly called “motion blur”. Another common case
is the out-of-focus blur, less common in smartphones
as they offer a focus to infinity, only objects too close
to the camera are subject to this. Finally, we cannot ig-
nore other environmental effects, such as dirt or steam
on the lens, there are also some artifacts that can be
caused by lens distortion on the border of the image or
the video compressing algorithm.

The company GoPro offers a dataset[12] matching
and mixing these situations taken from their action-
cameras. Most of the algorithms we present have been
evaluated against this dataset with measures of SSIM
and PSNR. The PSNR is a quality measurement between
the original and the reconstructed image, the higher is
the PSNR, the better is the quality of the reconstruction
algorithm. While the PSNR is a pixel to pixel compari-
son, the SSIM is focused on the image structure. This
means that both of these measurements are valuable
as they do not have the same response to the same
artifacts.

In this paper, we have selected a few of the best-
ranked neural networks in terms of their average PSNR
and SSIM for the GoPro and related dataset. The Scale-
Recurrent Neural network (SRN) being both open source
and still in the top list, we will focus our attention on
its structure and performance while still covering key
points of other papers. We will also present a simple im-
plementation of a CNN done for this paper and compare
its performance against the SRN.

The inverse problem of video deblurring shares many
similarities to other fields such as video supersampling,
image denoising, tomographic reconstruction and even
image segmentation. Network architecture made for
one field can often be reused and adapted to another set
of problems, which is why we will cite some resources
concerning other areas during the following section.

2 RELATED WORK
2.1 Traditional Methods

Traditional methods for deblurring are less performant
than their machine-learning counterparts but they have
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their own advantages. These algorithms offer a better
reproducibility, we clearly understand each step taken,
and they are generally more robust in front of a dia-
metrically different dataset. These methods work with
the assumption that, when an image is blurred, the in-
formation is not lost as it just becomes redistributed
in accordance with some rules (except for the borders
of the image). When you know or retrieve this redis-
tribution rule, you can revert the effect to restore the
image.

2.1.1  Non-blind deconvolution. First proposed by the
mathematician Norbert Wiener during the 1940s, non-
blind deconvolution is a reconstruction method which
tries to obtain a sharp image f having as input a blurred
version g and a convolution kernel h. The reconstruc-
tion can be expressed as follows :

g9(x,y) = h(x,y) = f(x,y)

The kernel h is called the point spread function (PSF),
it represents how the blur impacts each pixel, and will
change accordingly to the types of blur. For this method
to work, the PSF needs to be known in advance and
selected manually. An out of focus blur can be expressed
with a gaussian function, while a motion blur is more
of a line-spread for a pixel.

Figure 2: PSF for out of focus and motion blur [26]

The Wiener filter is not a simple inverse filter though
as it takes the noise of the image into account to cre-
ate a better reconstruction. The image and the noise
are considered as random processes and the filter only
outputs the values for which the frequency response is
the Minimum Mean Square Error (MMSE). The formula
can be expressed as follows :
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Other non-blind deconvolution filters such as Tikhonov
regularization, and Lucy Richardson filter (1972) are
available to obtain similar results. It can be useful to
vary the method depending on the image to see which
one performs the best.

2.1.2  Blind deconvolution. Blind deconvolution can be
used when no information about the blur and noise
are known. This method selects a first approximation
of the PSF and applies a deconvolution using one of
the methods presented above. The degree of quality
of the resulting image is identified according to some
criterion, and based on this score the PSF is tuned. This
process repeats until the required result is achieved[2].
The function to create the PSF needs to be malleable
enough to match many kinds of blur, but at the same
time the number of parameters need to be manageable.
It is important to note that this problem is underdeter-
mined, which means that the solution is non unique. To
ensure the uniqueness and the quality of the result, the
PSF needs to be constrained by another set of criterias.
One well known representation of the PSF has been
proposed by Markam[9] in 1999. The definition has
been derived from the optical properties of a pupil:

2
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With r; the lateral position of pixel j, F the discrete
Fourier transform and ag (z) a pupil function at frequel
k and depth z. We define the pupil function as follows :

ar(z) = prexp(i2r(dx + 2k )
Pk = Z ,BnZI?

¢k = Z Oth’?
Y = V(ni/A)? = [ki|?

With Z7! the n-th Zernike polynomial and n; the refrac-
tive index of immersion medium. This all means that
the PSF is parametrized by (n;, a, ).

h(rj,z) =

2.2 Machine learning methods

With an impressive breakthrough[7] made during the
2012 ILSVR challenge, machine learning based meth-
ods became the new go-to for image restoration and
segmentation algorithms. While these methods are not
new, the novel access to large dataset and the increase of

computational power through GPU gave machine learn-
ing the much-needed tools to shine. Machine learning
methods share the same process (dataset transforma-
tion, training and testing) but they differ on their neural
network architecture. In this section, we will review
and compare popular architecture used for image de-
blurring.

2.2.1  Convolutional Neural Networks (CNN). Given an
input image, the role of the CNN is to reduce it into
a shape that is easier to process, while conserving the
features of the image used for predictions. The CNN
architecture[4] is composed of a series of convolution
and activation layers. One of the first successful usage
of a CNN for image deblurring was used by Microsoft
Research[3] in 2014. In this work, the network is com-
posed of 3 groups of convolution-activation which is
pretty lightweight and can run easily in real time.

The role of the first layer is to extract the feature of
the input image (edges, corners, ridges, etc) and out-
puts high-resolution patches. These patches are then
mapped to a lower-resolution representation and finally
reconstructed to the 3-channels output image.

Another successful CNN architecture was used in
2016 for license plate motion deblurring[23]. Their net-
work is made of 15 groups of convolution + ReLU ac-
tivation layers. This network is able to handle satura-
tion, non-uniform blur, compression artifacts and non-
gaussian noise. In their paper, they compared the perfor-
mance of their architecture with varying filter size and
numbers of channels for each layer and found out that
the higher it was the stronger their results remained
against more difficult data (larger dimension and blur).

2.2.2  Auto-Encoders. Auto-Encoders are made of two
parts : an encoder which extracts the features of an
image and a decoder which reconstructs a higher di-
mensional image based on the extracted features. The
center of the network is notably small in dimension
as the outputed features are smaller than the input im-
age. Auto-Encoders, just like CNN, relies heavily on
convolutional layers, but they also often add pooling
layers to further reduce the image dimension during
the encoding stage.

This architecture is used in many image restoration
fields, if not many of them with the same network[1, 8].
The auto-encoder architecture is also often modified to
include skip connections for the network to conserve
the details of the image. This method, popularized with



the U-Net[20] paper in 2015, consists of connecting lay-
ers of the encoder to the corresponding layers of the
decoder. As the encoder is reducing the dimension of
the image, some details are inevitably lost in the proce-
dure. By concatenating results from previous stages of
the encoder to the decoder, we can recover this kind of
data.

Qutput
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Conv2D 4x4 \\ Conv2DTranpose 2x2
MaxPooling2D 2x2 Concatenate
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Figure 3: U-Net network schema[20]

2.2.3  Recurrent Neural Networks (RNN). Recurrent neu-
ral networks are used to improve the prediction in a
sequence of data such as tracking a moving subject in a
video. The basic idea[17] is to keep in memory a result
from a specific step of the network and mix it with new
input during the next epoch. This approach is great for
short-term memory but lacks the ability to remember
too old data. This problem is called the Vanishing Gra-
dient and some architecture such as long short term
memory (LSTM) and gated recurrent units (GRU) have
been created to handle it. We won’t cover these details
here as such structures are not used in our analyzed
papers.

The LSTM[6] were introduced by Hochreiter and
Schmidhuber as a way for the network to remember
information for long periods of time. It is composed of 4
layers and 3 gates that have the role to store or remove
some of the information that goes through the cell.
Further information can be found on colah’s blog[15].

RNN mechanisms are necessary for video based data-
sets as they provide further temporal stability and more
information about the overall context of the sequence.
It was used on dynamic scenes by Zhang and Pan[27]
for the CVPR 2018 and further improved by Nah and
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Figure 4: ConvLSTM cell schemal6]

Son[14]. Both of their works are structured on a U-
Net, for which they provide information from previous
epochs at multiple stages of the pipeline.

More recent papers have refined the RNN structure[11,
19] into self-attention modules. The role of these mod-
ules is to take into account all of the previous inputs
instead of the few last ones in order to increase the
weight of the most valuable input areas. There are mul-
tiple ways to introduce this mechanism in computer
vision and it will be further described during our Scale
Recurrent Network analysis.

2.24 Hybrid models. SRN is no longer state of the art
and has been outperformed by a few algorithms. We
will present the broad ideas and structures of these
hybrid networks. First and foremost we see that almost
all of these papers are using a modified version of the
U-Net auto-encoder, as well as improved recursivity
through multiple attention modules. Cascaded entries
similar to the SRN fashion are also present in some
algorithms which clearly shows that these works are
on the continuity of previous papers.

RADNet[18] (2019) is, at the time of writing, the 2nd
ranked algorithm in terms of SSIM and 3rd for the PSNR.
A rough summary would be to present it is a U-Net
with a self-attention module at the bottleneck and con-
volutional layers capable of extracting depth motion
information. These layers are called dense deformable
modules (DMM) and allow the network to understand
and reconstruct images where the blur acts differently
depending on the distance to the camera of the objects.
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MB2D[16] (2020) states that they have to blur more
to deblur better. Their network is based on a CNN that
is cascaded with the same inputs at different levels of
blur. Split in two, the first module of their network adds
and predicts more blurred images, this result is then
passed unto the multi-scale deblurring module which is
similar to a decoder and outputs a final image. The net-
work reuses results from lower scales at higher scales
similar to the skip connection fashion in U-Nets, and
relies on multiple recurrent modules. With this novel
architecture, they rank second for the GoPro dataset.

BANet[25] (2021) stands for Blur-aware Attention
Networks for Dynamic Scene Deblurring and is now
the best ranked algorithm in terms of video deblurring.
It is structured as an asymmetric U-Net with multiple
attention networks at its center and blur-aware modules
right before the decoder. Their Blur-Aware attention
modules are constructed in two parts, a multi-kernel
strip pooling (MKSP) and attention refinement (AR)
that allows them to detect the blurred areas of an image
at multiple distances. The masks obtained are then used
by the encoder to reconstruct high-quality images with
impressive results (2db more than SRN).

3 METHOD
3.1 Problem Setting

Scale recurrent Network for Deep Image Deblurring
(SRN) has been proposed in 2018 by the University of
Hong Kong and was the best ranked algorithm against
the GoPro Dataset at the date of contribution. The Go-
Pro Dataset consists of multiple series of images ex-
tracted from video captured from an action camera.
This footage contains all kinds of blurry footage that
can be particularly difficult to restore. It is also impor-
tant to remember that Image deblurring is an ill-posed
problem : there is not enough information in the base
image to produce a higher quality one so data extrapo-
lation is necessary.

One way to increase valuable data for our recon-
struction is to take into account multiple entries. The
frames we are trying to restore do not exist in a vac-
uum, they belong to a set of frames making up the
video. In machine learning such mechanisms are intro-
duced through the use of recurrence and the concept
of attention. The latter was a new concept in the time
of publication so it wasn’t properly introduced in the
architecture as the latest deblurring papers did.

The complexity of the restoration is directly impacted
by the size of the network. While adding layers can
provide better results, it also poses problems for con-
vergence, computation time and the inner limit of the
auto-encoder architecture. As the encoder reduces the
size of the input at each step, there is a certain limit
that the feature map cannot go below. The SRN team
decided for a fair but limited number of layers and se-
lected a ResBlock structure in them, proven to be of
higher quality than standard convolution as explained
further below.

3.2 Network Architecture

The SRN is an hybrid architecture which can be sum-
marized as a recurrent U-Net with ResBlocks layers.
It takes as input a blurry image (B1) which is down-
sampled two times by half its quality (B2 and B3). The
network is run 3 times, one for each level of quality
starting with the lowest one. The result of each run is
fed back into the network for the next run. At the end
the network outputs a deblurred image.

Figure 5: ResBlock schema

3.2.1 ResBlock. The base layer of SRN is a residual
learning block, commonly called ResBlock. Presented
by He and Zhang[5] from Microsoft Research, these
double-convolution layers introduce skip connections
as a way to reduce the degradation of the training accu-
racy. The skip connection is simply a concatenation of
the entry tensor with the output tensor, it is seen as a
way to blend different levels of extracted features. With
this mechanism the error evolution is more stable and
can be visualized as smoothing the gradient descent.
The decoder is made of 3 groups of 1 convolution
followed by 3 ResBlocks. The decoder is symmetric
with groups of 3 ResBlocks followed by 1 deconvolu-
tion layer. The kernel size is fixed at 5, and the stride is
always 1 except for the 4 inner convolution and decon-
volution for which the stride is set to 2. The entry and
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Figure 6: SRN-DeblurNet schema

output of the network is of dimension 32 (8 bits images
with 4 channels), going through each group of the en-
coder this dimension is multiplied by 2, and reduced by
2 during the decoder, which means that the bottleneck
is of dimension 128.

3.2.2  U-Net. In comparison with the original U-Net,
SRN is adjusting multiple parameters while maintaining
the overall structure and ideas. SRN has 22 convolution
operations in its encoder and decoder which is twice
as much as the original U-Net. Resblocks have replaced
the standard convolution and this allows the team to
have more operation as explained above, and an added
complexity.

However in terms of tensor dimension SRN is much
more narrow with the maximum size being 128 in the
bottleneck while it is 1024 on U-Net. It is explained by
the fact that to make a valid reconstruction, the SRN
team needs the feature map not to go through a lot of
downsampling. U-Net being a segmentation network,
their first goal is to extract as finer features as possible,
the decoder is not reconstructing the image but trying
to add a valid tag for the features extracted.

The main attribute of U-Net is skip connection, in
a similar fashion as the ResBlock structure, and this
attribute is respected by the SRN team. In practice, the
output of each group in the decoder is kept in mem-
ory and concatenated with the input of the matching
group in the encoder. Some cropping of the tensor can

be necessary to respect the network dimension. This
process in computer vision allows us to keep higher-
level features which would be lost in the convolution
steps.

3.2.3 Recurrent U-Net. In order to bring information
from the previous frames to the reconstruction, an
LSTM was introduced at the bottleneck of the autoen-
coder. The implementation chosen is known as Conv
LSTM[21] which is proven to perform well on image-
based datasets. The particularity of this cell is to keep
the input dimension through a padded convolution, so
the tensor does not need to be flattened.

SRN is structured so that each frame is run through
the network 3 times, one for each resolution. As the
network is run from the lowest resolution to the highest,
the LSTM cell is upsampled by 2 at each run. Similar to
what is done with the skip connection, this process of
using the same network multiple times with different
levels of resolution is a way to extract different levels of
features and further enhance the final reconstruction.
As the input from the second run is concatenated with
the last output of the network, the result is smoothed-
out which has a tendency to provide better results for
deblurring.

4 RESULTS

Our results are obtained with an NVIDIA GTX 960M
GPU. We discarded the use of CPU in order to keep



An analysis of Scale Recurrent Network for video deblurring

our computation time as short as possible. SRN is im-
plemented with the TensorFlow framework while our
custom CNN and AE uses PyTorch. All experiments are
conducted on the same dataset with the same training
configuration.

4.1 Dataset preparation

We focus on the GoPro dataset[12] which contains
3,214 blurry images with their sharp groundtruth. This
dataset has created its blurry images by averaging con-
secutive short-exposure frames, which has proven to
be realistic[13, 22].

For SRN we keep the input image size at 1280x720
pixels, but our custom CNN / AE has to resize the image
to 1024x1024 during data loading in order to work more
efficiently. We are using 2,103 pairs for training and the
remaining 1,111 pairs for evaluation. It is a distribution
of 25 percent for validation and 75 percent for training.

4.2 Training settings

SRN uses Adam solver as their optimization algorithm,
the learning rate is computed with an initial value of
0.0001 and is diminished to 1e6 for 2000 epochs. Ac-
cording to their experiments 2,000 epochs are enough
for convergence. At each iteration, they sample a batch
of 16 blurry images and randomly crop 256 x 256-pixel
patches as training input. Ground truth sharp patches
are generated with the same method. Since their net-
work is fully convolutional, images of arbitrary size can
be fed in it as input. For testing images of size 1280
x 720, the running time of their proposed method is
around 1.6 seconds. All trainable variables are initial-
ized using the Xavier method[10]. The loss chosen is a
simple L2-norm between the network output and the
ground truth.

On the side of our custom CNN/AE, we also use Adam
as the optimization algorithm, with a learning rate of
0.001. We are using a dynamic learning rate, reduced
based on the ReduceLROnPlateau() learning rate sched-
uler. The patience is 5 and factor is 5. So, if the loss value
does not improve for 5 epochs, the new learning rate
will be old learning rate * 0.5. We achieve convergence
at 500 epochs, and save the output of the network at
this step.

4.3 Quality evaluation

We compare SRN against our simpler CNN and AE
implementations. Comparison against state of the art is
available on the original SRN paper and the work cited
for hybrid models in part 2.1.4. We evaluate the results
through training time, peak to noise ratio (PSNR) and
structural similarity index (SSIM). For all results in this
section we have included the full-frame result images
in a zip file next to this paper.

train loss
—— validataion loss

Epochs

Figure 7: Loss evolution over training. Top is CNN,
bottom is AE

4.3.1 Training time. For our CNN and AE, we trained
them with 500 epochs which took approximately 8
hours for the CNN and 4 hours for the AutoEncoder.
We haven’t trained SRN again due to large training time
explained in their paper (72 hours for 2000 epochs on a
higher-end graphics card than ours). As expected, the
AE has a better training time than the CNN : only 50 to
100 epochs are necessary while the CNN needs at least
400.

4.3.2  Image to image comparison. As a disclaimer, our
custom implementation of CNN/AE saves the output
images in black and white due to a problem happening
during the conversion from tensors to RGB values. The
calculation of PSNR and SSIM for our custom answer is
done between the resized ground truth and the network
output before black and white conversion. The results
obtained by the CNN and AE are exactly the same so
we will indicate only one.
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Input GT SRN AE

Figure 8: The results obtained. Input is the blurred image. GT is ground truth. SRN is SRN output. AE is

auto-encoder output

Figure 9: Blurred input on the left and SRN output on the right

It is clear by the results that SRN is much more pow-
erful than a simple CNN/AE. While these simpler net-
works can provide good results on simple images, when
asked for more difficult data such as with multiple mov-
ing objects or some depth the results are unconvincing.

SRN in comparison is much more robust against mul-
tiple kinds of blur and difficult setups, as it works with
an LSTM module, it also handles way better a serie of

frames and prevents many distortions from happening
due to its awareness of the global context. We see a
difference in terms of 5 to 10db for the PSNR and about
0.2 for the SSIM, which is huge. Each year, the state of
the art is approximately improving by 1db. If we use
this graduation we can say that SRN is a 5 to 10 years
improvement over simple networks.
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Figure 10: Blurred input on the left and SRN output on the right

Table 1: PSRN and SSIM of the multiple scenes

SRN AE
Boat (Fig.8) 37dB/0.73 23dB/0.49
Car (Fig.9)  35.2dB/0.69 -

House (Fig.10) 31.75dB/ 0.65 -
Boy (Start Fig.) 37.63dB/0.97 -

Yet, SRN is now behind multiple state of the art net-
works, the gap between SRN and BaNET, the current
winner on the GoPro dataset, is 2db on PSNR and 30
on SSIM for a much higher computation time (424ms
against 26ms). We believe that the lack of powerful at-
tention modules is a start to understand the difference
in performance.

5 CONCLUSION

Image deblurring is an actively researched field and
it is no-surprise that SRN is no longer the best algo-
rithm. Yet, it has proven to be effective and powerful
and many of its ideas were reused and improved upon
by the state of the art. Most of the recent evolution were
done through attention modules for which we can see
a glimpse in the recurrent architecture of SRN. These
recent networks are hybrids, taking parts and bits from
previous architecture and merging them into a coher-
ent whole. We now even see popular softwares such
as photoshop introducing deblurring tools through the
use of deep learning, an opening that annonces a bright
future and many more innovations in this field.
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